...
...

Кэширование данных: путь к повышению производительности

Компьютерная индустрия занята беспрестанными поисками путей повышения производительности. Принимая как лозунг высказывание, что быстрее - это всегда лучше, инженеры тем не менее ищут способы увеличить производительность, не переусложняя при этом конструкцию и не слишком взвинчивая себестоимость устройств.

Компьютер, состоящий из самых разных по принципам работы и назначению устройств, можно с достаточно вескими основаниями назвать "гнездом раздора". Ну никак его подсистемы и узлы не хотят согласованно работать на общее благо. Если процессор вырывается вперед, от него отстает память, а о дисковых накопителях и говорить не приходится. И заставить всех бежать со скоростью, задаваемой лидером, чрезвычайно сложно.

Кэширование - один из технических приемов, направленных на согласование работы разных по скорости устройств, используемый в компьютере многократно и на самых разных уровнях. Хотя реализация кэширования в том или ином конкретном случае может быть весьма сложной, его идея очень проста. Внутри компьютера кэш представляет собой место, где временно хранится программная информация, адреса или данные.

Поскольку компьютерные вычисления носят ярко выраженный итерационный характер (то есть некоторая последовательность действий повторяется раз за разом с минимальными изменениями), кэширование обеспечивает весьма эффективный метод повышения производительности, предоставляя системе возможность сохранять часто требуемые данные в ближайшей промежуточной кэш-памяти, доступ устройства к которой происходит быстрее и легче, чем к основной памяти.

Кэширование чтения в жестких дисках Все ведущие производители, такие, например, как Seagate, признают технику кэширования особенно эффективной в отношении накопителей на жестких дисках. Связано это с тем, что скорость винчестеров в тысячи и даже миллионы раз меньше, чем у твердотельных элементов оперативной памяти на материнской плате компьютера.

Так как компьютер обычно обращается к дисковым накопителям последовательно, то есть последовательность запросов в какой-то мере предсказуема, производительность дисковой подсистемы можно существенно поднять, если считывать дополнительные данные в кэш-память еще до того, как компьютер обратится за ними. И необходимые данные будут тогда выданы из твердотельной памяти в несколько тысяч раз быстрее, чем если бы их пришлось считывать с диска.

Тесты показывают, что когда компьютер обращается за данными по некоторому адресу, в 80-90 процентах случаев следующий запрос коснется данных, расположенных вслед за ними. К сожалению, попытки поднять производительность за счет использования кэширования все же носят рискованный характер. Дополнительная информация считывается с диска на основании пусть и больших, но все-таки не стопроцентных шансов на успех, то есть на то, что они пригодятся в дальнейшем.

Итак, кэширование чтения основано на предсказании следующих обращений к диску за данными (обычно расположенными непосредственно вслед за только что прочитанными) и помещении их в быстродействующую память перед тем, как они потребуются системе. Поскольку программа, отвечающая за кэширование, считывает информацию в память до того, как за ней обратятся, такой механизм часто называют буфером с упреждающим чтением (read look-ahead buffer). С точки зрения еще более существенного повышения производительности не имеет смысла размещать кэш-буфер и соответствующую программу в основной памяти компьютера, так как тогда она потребует часть вычислительных ресурсов центрального процессора. Дисковый накопитель сам способен справиться с упреждающим кэшированием, не отвлекая компьютер на хлопоты, связанные с управлением кэш-памятью.

По этим причинам сегодня все жесткие диски, включая винчестеры для мобильных, настольных и высокопроизводительных систем, поддерживают кэширование чтения, используя усовершенствованную концепцию. Например, при размещении на накопителе большего числа чипов памяти, что оборачивается возможностью держать в готовности большее количество данных, не дожидаясь их считывания с диска после получения запроса. Другими словами, при установке на печатную плату контроллера накопителя не 64, а 128 килобайт памяти появляется возможность загодя прочитать и приготовить к выдаче вдвое большее количество информации. И, до тех пор пока компьютер будет продолжать запрашивать последовательно записанные на диск данные, они будут моментально выдаваться ему из кэша.

Сегодня, когда большинство производителей использует от 128 до 512 килобайт кэш-памяти, компания Seagate в своих наиболее производительных накопителях Barracuda и Cheetah увеличила ее объем до полновесного мегабайта (предусмотрев возможность ее наращивания в четыре раза), а винчестеры Elite рекордной емкости (23 гигабайта) сразу оснащает 2 мегабайтами кэша. Это необходимо с учетом тех приложений, для которых предназначены указанные жесткие диски - для рабочих станций и серверов класса "хай-энд", мини- и суперкомпьютеров. В каждом из этих случаев постоянно требуется прочтение большого количества данных при максимальной скорости передачи. Настолько быстро, насколько только возможно.

Адаптивное кэширование Каждый раз, когда компьютер обращается за данными, которые уже находятся в кэше, запрос называется "попаданием в кэш". Если же запрошенных данных в кэше не оказалось и накопитель должен привести в действие свою механику и прочитать их с дисков, говорят о "промахе". О том, насколько эффективно работает программа (или алгоритм) кэширования, легче всего судить по соотношению попаданий и промахов. Сравнивая число попаданий с числом промахов, получают так называемый "рейтинг попаданий" для примененной схемы кэширования.

Применение стратегий, известных как адаптивное и сегментированное кэширование, помогает минимизировать частоту осечек.

Вот, к примеру, как работает сегментированный кэш. Предположим, что на винчестере установлено 800 килобайт кэш-памяти. Простая стратегия кэширования предполагает, что все эти 800 килобайт будут заполняться считываемыми в порядке упреждения данными.Если никакая часть из этих данных не будет востребована системой при следующем обращении, всех их придется удалить из кэша. Это промах. Замечу, что такое происходит сплошь и рядом при работе современных многозадачных систем, в которых за данными к диску обращаются поочередно несколько прикладных программ, причем каждая из них интересуется информацией, записанной на диске в совершенно другом месте.

Представим теперь, что кэш-память разделена на два сегмента по 400 килобайт каждый. Накопитель расценивает их как два абсолютно независимых кэш-буфера. Теперь данные для одного приложения можно записывать в первый 400-килобайтный сегмент, а для второго - во второй 400-килобайтный сегмент. Данные для обеих программ будут выдаваться из кэш-памяти, соотношение попаданий и промахов улучшится раза в два, если не больше. Именно поэтому в своих винчестерах Seagate применяет кэш-буферы, разделенные на два или четыре сегмента фиксированного размера. Наращивать их число свыше четырех инженеры из Seagate считают неоправданным, кроме исключительных случаев.

Второй путь улучшения рейтинга попаданий называется адаптивным кэшированием. В действительности термин адаптивное кэширование описывает два различных метода повышения эффективности. В соответствии с первым реализуется адаптивная сегментация, которая позволяет контроллеру винчестера управлять числом независимых сегментов, организуемых в кэш-памяти. Второй тип адаптивного кэширования подразумевает использование адаптивного алгоритма.

Предположим снова, что на винчестере установлен 800-килобайтый кэш-буфер с упреждающим чтением и этот буфер разделен на четыре сегмента по 200 килобайт. Предположим также, что запущенное на компьютере приложение запрашивает данные, которых нет ни в одном из четырех сегментов. Накопитель должен смириться с промахом и прочитать их со своих дисковых пластин, а заодно решить, куда их поместить в кэш-памяти. Чтобы принять такое решение, ему предстоит определить, какой из четырех сегментов лучше очистить. Разумеется, нежелательно помещать новые данные в сегмент, информация из которого вскоре может быть затребована, так как это приведет к повторному ее считыванию и перезагрузке кэша. Адаптивный алгоритм принимает решение о том, данные из какого сегмента скорее всего больше не понадобятся, основываясь на собственном анализе предыдущего использования данных.

В кэшировании наиболее приятно то, что оно предлагает относительно недорогой и простой способ согласования быстродействия компьютера и периферийных устройств. Хорошо реализованное кэширование помогает увеличить производительность сразу на несколько порядков.

Роман Соболенко,по материалам Seagate

© Компьютерная газета

полезные ссылки
IP камеры видеонаблюдения
Корпусные камеры видеонаблюдения